The use of plastic details to increase the contact surface of the substrate during the cultivation of attached species of algae

 

Olga Yu. Kalinina1, Philipp V. Sapozhnikov2, Anastasiya A. Snigirova3, Alexey I. Salimon4,5, Yaroslava V. Kaliaeva5

1Lomonosov Moscow State University (Moscow, Russia)
2Shirshov Institute of Oceanology RAS (Moscow, Russia)
3Institute of marine biology of the NAS of Ukraine (Odessa, Ukraine)
4National University of Science and Technology MISIS (Moscow, Russia)
5
Skolkovo Institute of Science and Technology (Moscow, Russia)

 

A series of experiments was carried out using strips (and nets) of synthetic polymers to increase the contact surface during the cultivation of attached forms of microphytes. We used bands of different composition, as well as with different microrelief surface areas, and a fine-mesh PLA network with an inhomogeneous surface. The experiments were performed on liquid nutrient media in accumulative cultures, and on solid nutrient medium in pure culture. The results showed a number of positive features of such cultivation, based on the selective isolation of individual species and their small combinations from the composition of accumulative cultures, as well as on the effective growth of individual species on specific elements of the microrelief of polymer surfaces. The polymers used were: PET, PP, LDPE, UHMWPE and PLA.

Key words: epipsammon; microepilithon; microepiphyton; cultivation; microalgae; plastic; heterogeneous surface; colonisation

 

Full text of the article in Russian - http://algology.ru/1628

References

  1. Allen M.M., Stanier R.Y. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 1968. №51. P. 199–202. DOI – https://doi.org/10.1099/00221287-51-2-199
  2. Berges J.A., Franklin D.J., Harrison P.J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the past two decades. J. Phycol. 2001. №37. P. 1138–1145. DOI – https://doi.org/10.1046/j.1529-8817.2001.01052.x
  3. Brune D., Lundquist T., Benemann J. Microalgal biomass for green-house gas reductions: potential for replacement of fossil fuels and animal feeds. J. Environ Eng. 2009. №135. P. 1136–1144. DOI – https://doi.org/10.1061/(ASCE)EE.1943-7870.0000100
  4. Gross M., Jarboe D., Wen Z. Biofilm-based algal cultivation systems. Appl. Microbiol. Biotechnol. 2015. №99. P. 5781–5789. DOI – https://doi.org/10.1007/s00253-015-6736-5
  5. Gross M., Zhao X., Mascarenhas V., Wen Z. Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol. Biofuels. 2016. №9. P. 38. DOI – https://doi.org/10.1186/s13068-016-0451-z
  6. Harrison P.J., Waters R.E., Taylor F.J.R. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J. Phycol. 1980. №16. P. 28–35. DOI – https://doi.org/10.1111/j.0022-3646.1980.00028.x
  7. Kang J., Wang T., Xin H., Wen Z. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations. J Air Waste Manag Assoc. 2014. №64. P. 330–339. DOI – https://doi.org/10.1080/10962247.2013.859185
  8. Kesaano M., Sims R. Algal biofilm based technology for wasteway ter treatment. Algal Research. 2014. №5. P. 231–240. DOI – https://doi.org/10.1016/j.algal.2014.02.003
  9. Mata T., Martins A., Caetanao N. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews. 2010. №14. P. 217–232. DOI – https://doi.org/10.1016/j.rser.2009.07.020
  10. Pittman J., Dean A., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology. 2011. №102. P. 17–25. DOI – https://doi.org/10.1016/j.biortech.2010.06.035
  11. Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stainer R.Y. Generic assignments. Strain histories and properties of pure cultures of Cynobacteria. J. Gen. Microbiology. 1979. №111. P. 1–61. https://doi.org/10.1099/00221287-111-1-1
  12. Watanabe M. Freshwater culture media. In: Andersen R.A. (Ed.) Algal Culturing Techniques. Elsevier, Amsterdam, 2005. P. 13–20.

 

Authors

Kalinina Olga Yu.

ORCID – https://orcid.org/0000-0001-9446-9149

Lomonosov Moscow State University, Moscow, Russia

bio-energymsu@mail.ru

Sapozhnikov Philipp V.

ORCID – https://orcid.org/0000-0002-3239-6543

Shirshov Institute of Oceanology RAS, Moscow, Russia

fil_aralsky@mail.ru

Snigirova Anastasiya A.

ORCID – https://orcid.org/0000-0003-4501-3860

Institute of marine biology of the NAS of Ukraine, Odessa, Ukraine

snigireva.a@gmail.com

Salimon Alexey I.

ORCID – https://orcid.org/0000-0002-9048-8083

National University of Science and Technology MISIS, Moscow, Russia; Skolkovo Institute of Science and Technology, Moscow, Russia

a.salimon@skoltech.ru

Kaliaeva Yaroslava V.

ORCID – https://orcid.org/0000-0002-7974-1623

Skolkovo Institute of Science and Technology, Moscow, Russia

J.kalyaeva@gmail.com

 

ARTICLE LINK:

Kalinina O.Yu., Sapozhnikov Ph.V., Snigirova A.A., Salimon A.I., Kaliaeva Ya.V. The use of plastic details to increase the contact surface of the substrate during the cultivation of attached species of algae. Voprosy sovremennoi algologii (Issues of modern algology). 2021. № 1 (25). P. 110–123. URL: http://algology.ru/1628

DOI – https://doi.org/10.33624/2311-0147-2021-1(25)-110-123

When reprinting a link to the site is required


Dear colleagues! If you want to receive the version of the article in PDF format, write to the editor, please and we send it to you with pleasure for free. 
Address - info@algology.ru








Homepage

EDITORIAL BOARD

FOR AUTHORS

PEER REVIEW PROCEDURES

THEMATIC SECTIONS

ENGLISH SUMMARY

2012

2013

2014

2015

2016

2017

2018

2019

2021

ARTICLES

NEWS

Contacts


Рассылки Subscribe.Ru
Журнал "Вопросы современной альгологии"
Подписаться письмом


Tegs:
микроводоросли    макроводоросли    пресноводные    морские    симбиотические_водоросли    почвенные    Desmidiales(отд.Сharophyta)    Chlorophyta    Rhodophyta    Conjugatophyceae(Zygnematophyceae)    Phaeophyceae    Chrysophyceae    Диатомеи     Dinophyta    Prymnesiophyta_(Haptophyta)    Cyanophyta    Charophyceae    бентос    планктон    перифитон    кокколитофориды    Экология    Систематика    Флора_и_География    Культивирование    методы_микроскопии    Химический_состав    Минеральное_питание    Ультраструктура    Загрязнение    Биоиндикация    Размножение    Морфогенез    Морфология_и_Морфометрия    Физиология    Морские_травы    Использование    ОПРЕДЕЛИТЕЛИ    Фотосинтез    Фитоценология    Антарктида    Японское_море    Черное_море    Белое_море    Баренцево_море    Карское_море    Дальний_Восток    Азовское_море    Каспийское_море    Чукотское_море    КОНФЕРЕНЦИИ    ПЕРСОНАЛИИ    Bacillariophyceae    ИСТОРИЯ    РЕЦЕНЗИЯ    Биотехнология    Динамические_модели    Экстремальные_экосистемы    Ископаемые_водоросли    Сезонные_изменения    Биоразнообразие    Аральское_море    первичная_продукция    Байкал    молекулярно-генетический_анализ    мониторинг    Хлорофилл_a    гипергалинные_водоемы    сообщества_макрофитов    эвтрофикация    инвазивные_виды    

Contacts

Email: info@algology.ru

Design by
5Dmedia

LICENSE

Эл N ФС 77-22222 от 01 ноября 2005г.

ISSN 2311-0147